Manufatura Aditiva na transformação digital uma estratégia a cumprir

Martinho Oliveira

EMaRT Group – Emerging: Materials, Research, Technology CICECO – Aveiro's Institute of Materials Diretor - Escola Superior Aveiro-Norte Universidade de Aveiro

Webinar "Digital Take off | Manufatura aditiva na Transformação Digital"

28 de Maio de 2020

By Microsoft Teams

AM landscape (hardware, software, materials, post-processing

Source: AMFG, 2019

number of polymer and metal AM systems manufacturers

Polymer AM manufacturers

Metal AM manufacturers

Source: AMFG, 2019

Sales evolution of materials and money spent in AM production

Sales of materials for polymer powder bed fusion. Figures are in millions of dollars. Source: Wohlers Report 2019.

Money spent annually on part production using AM. Figures are in millions of dollars. Source: Wohlers Report 2020

AM: opportunities, key industries and limitations

AM is being recognized across different industries

Opportunities for AM:

decline of some traditional manufacturing sectors environment sustainable products an production methods innovative products and production lines/flux customization global economy centered in the individual

3 key industries: Automotive, Aerospace, Medical

Automotive: new products to market quickly and in a cost effective way Aerospace: very complex and high performance products Medical: easy of converting 3D medical imaging data; customization

AM limitations:

education/training speed accuracy materials properties business implications received limited attention

Liquid-based rapid manufacturing techniques

. Starting material is a liquid

. About a dozen rapid manufacturing technologies are in this category, examples of commercial solutions:

Stereolithography (SL) Solid ground curing (SGC) Polyjet Droplet deposition manufacturing (DDM) _ Robocasting or Direct Ink Writing (DIW)

Polymerization

Solid-based rapid manufacturing techniques

. Starting material is a solid

. Solid-based RP systems include the following processes:

Laminated object manufacturing (LOM)

Fused deposition modeling (FDM/FFF)

Powder-based rapid manufacturing techniques

. Starting material is a powder . Powder-based RP systems include the following:

Selective laser sintering (SLS)

Selective laser melting (SLM)

(Simoldes Aços)

Electron Beam Melting (EBM)

Three dimensional printing (3DP)

Food and Corals by R3D: student projects

Goals:

- Introduction to AM
- Materials Science for Design Students: characterization and properties

Cork by 3DP

Homogeneous surface and dispersion

After binder deposition

After the deposition of a new layer of cork powder

Cork by FFF

A biodegradable composite

Glass by H-R3D

Goals:

- Equipment for Glass AM
- Glass formulations

Glass Studio

Metal parts for injection moulds by SLS/SLM

DSC of PA12

BET of powder maraging stell

1

Visual aspects of samples after debinding and vacum sintering process: a) 20wt.% binder, b) 10wt.% binder and c) 4 wt.% binder (26%vol.)

After sintering (N₂ atmosphere)

Metal parts for injection moulds by SLS/SLM

Direct SLM

Renishaw AM 500Q maraging steel processsing

After SLM processing: a) before powder removal, b) after powder removal.

Bioactive glass scaffolds by 3DP, FFF and R3D

L.S.O. Pires et al., Int J Adv Manuf Technol, 98 (9-12), pp: 2665-2676, **2018** (https://doi.org/10.1007/s00170-018-2369-z) L.S.O. Pires et al., J Therm Anal Calorim, 134 (3) pp: 2115-2125, **2018** (https://doi.org/10.1007/s10973-018-7307-7)

Bioactive glass scaffolds by 3DP, FFF and R3D

Bioactive glass scaffolds by 3DP, FFF and R3D

Hydroxyapatite filaments for scaffolds Matrix: PLA (20%wt)

gel structures by R3D

Project with Compass group (Professor João Mano)

Goals

- Exploring 3DP as an alternative technology for ceramic production.
- Reducing manufacturing time
- New markets
- Manufacturing of parts with complex geometries (that are not possible to obtain through conventional manufacturing techniques).

3D Printed tests with different binders

Binder 4

Binder 5

Table 1 Composition of binder formulations

-	Material	Binder 1	Binder 2	Binder 3	Binder 4	Binder 5
		(wt%)	(wt%)	(wt%)	(wt%)	(wt%)
	Sucrose	15	15	15	15	15
	Glycerol	2	4	4	8	8
	Ethanol	2	2	4	4	8

Heat treatment

CTCV

- Powder selection
- Powder distribution
- Flowability
- Contact Angle
- Binders
- Printer parameters

Goals

- Exploring R3D as an alternative technology for ceramic production.
- Developing industrial ceramic pastes with rheological properties matching R3D requirements
- Reducing manufacturing time
- Rapid Fabrication of 3D products with complex geometries
- New Markets

Speed (mm/s) 10 Pressure (bar) 2 (a) 2.5 (b)

Operating process parameters to manufacturing 3D model: sintered honeycomb structures (a, b) and green honeycomb model with contour (c,d)

costaverde

SEM micrographs on top surface and fracture of green (a, b) and sintered (c,d) model manufacturing with 2.5 bar and 10 mm/s

universidade de aveiro

RoboCer3D

Robocer3D: AM of porcelain products by R3D

- Powder selection
- Powder distribution
- Viscosity
- Printer parameters
- Filament quality

Problems

Add.Additive - add additive manufacturing to Portuguese

Add.Additive: Indirect SLS of porcelain powders

Add.Additive: robocasting of WC

- WC pastes with customized properties based in industrial WC-Co formulations
- Introduction of AM technology
- Post processing steps optimization

Add.Additive: robocasting of WC

AM – it's time to produce!

Martinho Oliveira (<u>martinho@ua.pt</u>) EMaRT – Emerging: Materials, Research and Technology Group Escola Superior Aveiro Norte, Universidade de Aveiro Estrada do Cercal, 449 3720-509 O. Azeméis Tel. [+351] 256 666 960